FICHA 2 - REGRESSÃO LINEAR SIMPLES

 A tabela seguinte contém os pesos (em Kg) e as alturas (em cm) de doze alunos do sexo masculino de uma determinada escola:

Peso (P)	70	63	72	60	66	70	74	65	62	67	65	68
Altura(A)	155	150	180	135	156	168	178	160	132	145	139	152

a) Represente graficamente o diagrama de dispersão correspondente às observações das duas variáveis;

Utilize o modo estatístico da sua máquina, sempre que possível, para calcular:

b)
$$\sum_{i=1}^{12} P_i$$
, $\sum_{i=1}^{12} A_i$, $\sum_{i=1}^{12} P_i^2$, $\sum_{i=1}^{12} A_i^2$ e $\sum_{i=1}^{12} P_i A_i$;

- c) A variância da variável peso;
- d) A variância da variável altura;
- e) A covariância entre as variáveis P e A;
- f) A ordenada na origem e o declive da recta de regressão linear, sendo P a variável explicativa;
- g) A ordenada na origem e o declive da recta de regressão linear, sendo A a variável explicativa;
- h) Os coeficientes de correlação linear e de determinação das duas alíneas anteriores e interprete-os.
- 2. Foi feito um estudo para determinar a percentagem dos resíduos sólidos eliminados por um sistema de filtragem (*P*) em função da taxa de fluxo de efluente (*T*).

Taxa de fluxo de efluente (T)	1	4	6	8	10
Percentagem de resíduos sólidos (P)	24	19	17.5	14	12

- a) Represente graficamente o diagrama de dispersão correspondente às observações das duas variáveis;
- b) Determine a equação da recta de regressão, apresentando todos os cálculos que efectuar;
- c) Calcule e interprete os coeficientes de correlação linear e de determinação.
- 3. As begónias da espécie 'Corallina de Lucerna' foram sujeitas a um tratamento fungicida experimental. A tabela seguinte apresenta o número de begónias desta espécie que não sobreviveu ao tratamento, ao longo de nove semanas:

N^{o} de semanas após o tratamento (T_{i})	1	2	3	4	5	6	7	8	9
N° de begónias mortas (M_i)		36	25	28	24	26	25	23	17

Tenha em conta que
$$\sum_{i=1}^9 T_i^2 = 285$$
, $\sum_{i=1}^9 M_i^2 = 6424$, $\sum_{i=1}^9 T_i M_i = 1079$

a) Estime o modelo linear que traduz a relação entre o número de semanas após o tratamento, T, e o número de begónias mortas da espécie em estudo, M;

ESCOLA SUPERIOR AGRÁRIA DE COIMBRA

- b) Determine o coeficiente de determinação. O modelo linear é satisfatório? Justifique.
- 4. Deseja-se saber como é que o peso (P), em gramas, da pêra Rocha está relacionado com o seu diâmetro (D), em centímetros. Para tal, observaram-se 30 pêras e estimou-se, através do método dos mínimos quadrados, o modelo de regressão linear simples. O modelo estimado obtido foi $\hat{P}_i = a + 64.8843 D_i$. Sabendo que para as 30 pêras observadas se obteve $\bar{P} = 180.9667$, $\bar{D} = 6.6233$, $\sum_{i=1}^{30} D_i^2 = 1319.21$ e $\sum_{i=1}^{30} P_i^2 = 1006249.46$:
 - a) Calcule a ordenada na origem da recta de regressão linear;
 - b) Determine a covariância entre as variáveis P e D;
 - c) Mostre que o coeficiente de correlação linear entre P e D tem o valor aproximado de 0.75;
 - d) Faça a análise da precisão do ajustamento.